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A study of turbulent vortices in the near wake 
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Turbulent vortices in the wake of a circular cylinder have been examined in some detail 
following their detection by a method based on vorticity concentration and circulation. 
The experimental data were obtained at a Reynolds number Re = 5600 (based on the 
free-stream velocity and cylinder diameter) with an array of eight X-wires aligned in 
the plane of mean shear. Distributions of conditionally averaged vorticity and 
circumferential velocity within vortices are in reasonable agreement with those inferred 
from an Oseen vortex. The conditionally averaged streamwise velocity distribution 
through the vortex centre has a maximum at the centre, implying a vortex convection 
velocity greater than the local mean velocity. An Oseen vortex model reproduces the 
measured mean velocity and Reynolds stresses reasonably well. Results are also given 
for the streamwise variations of vorticity concentration, circulation and size of the 
vortices. 

1. Introduction 
The study of organized aspects of the motion in turbulent shear flows has invariably 

focused attention on the vortical structure of these flows. In particular, the relatively 
strong organization in the near wake of a cylinder has attracted a great deal of interest 
(e.g. Davies, 1976; Cantwell & Coles 1983; Kiya & Matsumura 1985; Hussain & 
Hayakawa 1987; Antonia 199 1). While these investigations have yielded useful 
information about the topology of the organized motion and the mechanism for 
turbulence production, little is known about the velocity and vorticity distributions of 
turbulent vortices. Such information, as well as knowledge of the streamwise and 
transverse locations of the vortices, is important in the development of vortex models 
for this and other flows. For example, an Oseen-type vortex model, together with the 
measured spatial arrangement of vortices, was recently used by Bisset, Antonia & 
Browne (1990) to calculate the mean velocity and Reynolds stresses in the far wake of 
a cylinder. The velocity and vorticity distributions for an Oseen vortex have been 
approximately verified for a laminar wake (see $2). Such verification is generally lacking 
in the turbulent case although Robinson (1991) has shown, using direct numerical 
simulations of a turbulent boundary layer, that at least some quasi-streamwise vortices 
near the wall resemble Oseen vortices. 

The main aims of the present study are: (i) to provide data on the velocity and 
vorticity distributions within turbulent vortices, and (ii) to investigate an appropriate 
kinematic model for this flow. A number of other issues are also addressed, for example 
the spatial arrangement, streamwise evolution and possible interactions associated 
with an array of vortices. 
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2. Velocity and vorticity distributions within a vortex: a brief review 

The circumferential velocity vo is given by (e.g. Granger, 1985, p. 475) 
The Oseen vortex is an exact non-steady solution to the Navier-Stokes equations. 

v ' -G[l-exp(-&)], - 2xr 

where r is the radius (origin at vortex centre), v is the kinematic viscosity and To is the 
vortex strength, defined as the circulation at time t = 0 (i.e. when viscosity first 
becomes important). For t > 0, (1) may be rewritten as 

where r1 is the value of r at which vo is maximum; r1 may be loosely identified with the 
core of the vortex. Since the radial velocity v, is zero, the vorticity is given by 

where wo = 1.26 ro/nr:.  
Equations (l), (2) and (3) have been verified experimentally for laminar vortices. For 

example, using the Oseen vortex as the basic building block, Schaefer & Eskinazi (1 959) 
calculated the velocity distribution for a vortex street model which agreed with their 
experimental results in a laminar wake (Re = 62). Similar verifications were reported 
(Re = 140) by Okude & Matsui (1987) who used both hot-wire and visualization 
techniques and by Green & Gerrard (1991) (Re = 80) using optical interferometry. 
Using hot wires, Okude & Matsui (1990) measured the vorticity distribution in a 
cylinder wake (Re = 140) and found it to be in reasonable agreement with (3). 

A number of models have been used to match, at least kinematically, experimental 
and numerical data in several different turbulent flows (e.g. Bloor & Gerrard 1966; 
Davies 1976; Oler & Goldschmidt 1982; Bisset et al. 1990; Robinson 1991). The Oseen 
vortex and the model proposed by Hoffmann & Joubert (1963) are two such examples. 
Hoffmann & Joubert suggested, using dimensional arguments and Prandtl's mixing- 
length theory, that for the inner core of turbulent vortices vB oc r, while for the outer 
core v, cc r-l lnr. A similar model was also suggested by Saffman (1973). 

In their investigation of vortex strength and velocity distribution in a cylinder wake 
(Re = 2 x lo3 and 1.6 x lo4), Bloor & Gerrard (1966) found that Hoffmann & Joubert's 
model was valid except for the inner core region, where they concluded, indirectly, that 
the Oseen vortex was more appropriate. The latter model is used more frequently. For 
example, it was used by Davies (1976) to model the planar near wake of a D-shape 
cylinder, by Oler & Goldschmidt (1982) to model the self-preserving region of a plane 
jet, and by Bisset et al. (1990) to model the self-preserving far wake of a circular 
cylinder. In general, this model can lead to a mean velocity distribution that is in accord 
with the measurements but does not yield a satisfactory shear stress distribution. For 
example, Oler & Goldschmidt obtained a shear stress of sign opposite to that 
measured. Bisset et al. needed to introduce a phase shift between velocity components 
to calculate the shear stress correctly. The difficulty experienced may be partly due to 
the complexity of turbulent flows and partly to the lack of information on individual 
turbulent vortices. In this paper, we attempt to provide such information and use it to 
develop a kinematic model that mimics the measured near-wake distributions of mean 
velocity and Reynolds stresses. 
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FIGURE 1. Schematic experimental arrangement. 

3. Experimental details 
Experiments were carried out in an open-return low-turbulence wind tunnel with a 

2.4 m long working section (0.35 m x 0.35 m). The bottom wall could be tilted to 
achieve a zero streamwise pressure gradient. A circular cylinder (d  = 12.5 mm) made 
of stainless steel rod was installed in the midplane and across the width of the working 
section, 20cm from the exit plane of the contraction, to generate the wake. This 
resulted in a blockage of about 3.6%. Measurements were made at a constant free- 
stream velocity (U, = 6.7 m/s) in the range 10 d x / d  < 60. The corresponding 
Reynolds number Re was 5600. In the free stream the longitudinal and lateral 
turbulence intensities were about 0.05 YO and 0.08 YO respectively. At the centreline, the 
longitudinal turbulence integral lengthscale was estimated to be equal to about 0.3d. 

A rake of eight X-probes (the spacing between adjacent probes was about 5 mm) was 
aligned transversely, with probe 4 on the centreline (figure l), to measure velocity 
fluctuations u and ZI at the eight X-probe locations. The Wollaston (€‘-lo % Rh) wires, 
5 pm in diameter and an etched length of about 1.3 mm, were operated with constant- 
temperature circuits. The signals were offset, amplified and then digitized using a 16 
channel, 12 bit data acquisition system, at a sampling frequency of 3 kHz per channel. 
The vortex shedding frequencyf, as inferred from the main peak in the v-spectrum was 
equal to 110 Hz. Using velocity and yaw calibrations, signals proportional to u and 2) 
were formed and stored on digital tapes. A record duration of about 30 s was used. 

The mean velocity 0, was obtained at each X-probe location using a personal 
computer and a data-logging system. U, was monitored continuously with a Pitot 
static tube connected to a Baratron pressure transducer. 
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4. Vortex Detection Method 
A wide variety of methods have been used for detecting the organized motion in the 

wake of a circular cylinder (e.g. Cantwell & Coles 1983; Kiya & Matsumura 1985; 
Hussain & Hayakawa 1987; Antonia 1991). Although each method has focused on 
different aspects of the organized motion, results from these different methods are 
basically in agreement with each other, due in no small part to the distinct organization 
of this flow. As the present focus is directed mainly at determining the characteristics 
of vortices, it seems important that the detection method should generally focus on 
vorticity. A method similar to that of Hussain & Hayakawa is therefore adopted. It is 
also important to minimize the smearing of vortex locations so that the details of 
individual vortices can be extracted unambiguously. This requires criteria additional to 
the vorticity concentration since a strong vorticity concentration is not necessarily 
associated with large-scale vortices and may be due to some secondary vortices (e.g. 
Wei & Smith 1986) that are not of direct interest here. Hussain & Hayakawa specified 
the size of vortices by requiring the streamwise and transverse extents of the smoothed 
vorticity to exceed a certain threshold value. In the present detection, circulation is 
used as an additional criterion. Details of the detection method are given below. 

There is little doubt that turbulent vortices are three-dimensional. While information 
on the three components of vorticity and the pressure field would be desirable for 
detecting the vortices, this is not practical in an experimental context. In the present 
scheme, only an approximation to the spanwise vorticity is used, namely 

AV AU 
Ax A y ’  

0 = --- (4) 

where Ax = -AtU,  and Ay is the spacing between adjacent X-probes. In (4) the 
instantaneous signals U and V are formed by adding the local mean velocity values of 
0 and F ( M 0) to the digital time series of the fluctuations u and u, i.e. U = 0 + u  and 
V = V +  u. Note that the average convection velocity U, of the vortex has been used in 
Taylor’s hypothesis for converting the time separation At into a streamwise distance. 
The values of U,, obtained by various methods, increase from about 0.85U0 to 0.92U0 
as x / d  increases from 10 to 60. Details associated with the determination of U, are 
given in Zhou & Antonia (1992a). 

Considering the coarse spacing (Ay M 5 mm) between probes, two extra rows of 
vorticity data points are interpolated between each pair of existing rows by least- 
square-fitting bi-cubic spline functions to the vorticity data obtained with (4). Some of 
the interpolated points are examined to ensure that the interpolation is reasonable. 

The criterion used for initially detecting a vortex and locating its centre is 

l ~ p l >  k u S m ,  (5) 

where w p  is a peak value of vorticity, Sm = (i30/ay)maz is the local maximum mean 
shear, and k, is a threshold, at first chosen arbitrarily and later modified after visually 
examining the detection locations on contour plots of the instantaneous spanwise 
vorticity. Since up is a local quantity, the local maximum mean shear appears to be a 
logical choice in (5). One advantage in using the vorticity concentration to locate 
vortices is that vorticity should not be affected by the choice of U,. Although Taylor’s 
hypothesis, Ax = - U, At, is invoked in (4), the convection velocity varies only slightly 
across the wake (Zhou & Antonia 1 9 9 2 ~ )  so that the influence on the detection 
locations is only small. 
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FIGURE 2. Examples of detections (indicated by +) at x / d  = 10 on (a) instantaneous vorticity 
contours (solid and dashed lines represent positive and negative contours respectively) and (b) 
sectional streamlines observed in a moving frame of reference (Ue,lU,, = 0.87). t = 0 is arbitrary. 

Before the circulation can be determined, an analytical expression for w(r ,0)  is 
needed. A surface-fit, using fourth-order Chebychev series, is applied to an 
approximately square grid of vorticity data centred on up. The origin of the cylindrical 
coordinates (r, 0) is at the location of up. 

To eliminate the dependence of w on 0 and to estimate the vortex size, the mean 
vorticity at a radius r from the vortex centre is defined by 

0 ( r )  = & 1; W ( P ,  0) d0, 0 < r < r,, (6) 

where rm is half the total size of the grid. 
The vortex size is then estimated as the value of rv for which 

lQ(r,)l = 00 (7) 
where 0, is an assumed minimum vorticity level for vortices. While the choice of 0, 
affects the value of r,, it does not affect the vortex detection. Here, a, is chosen to be 
1.5Sm, following Hussain & Hayakawa's observation that the maximum circum- 
ferential velocity around the vortex centre occurs when w w S,. It is shown in $ 5  that 
SZ, = 1.5Sm is a reasonable choice for the vortex core radius. 

Equation (7) is solved for r ,  by using a quasi-Newton optimizing algorithm (Gill & 
Murray 1976) which searches for the minimum of [li2(r)l-0,]2 (0 < P < rm). Once r, 
is determined, the corresponding circulation 

r = 2 ~  a(r)rdr  (8) r 
may be calculated. Since the detection aims to educe large-scale vortices, the magnitude 
of I' is required to satisfy the following condition: 

Irl 2 k,S,& (9) 
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where k, is a threshold determined in similar fashion to k,. The final values of k,,, and 
k, are chosen separately and fall between about 4.0 and 8.0 or 0.5 and 0.6 depending 
on the value of x/d.  

Several vorticity peaks may be associated with one vortex; an example is seen in 
figure 2(u), where more than one peak appears in the range 7 < tUJd < 9 and they are 
obviously related to the same vortex (this is clearer in the sectional streamlines of figure 
2(b); these streamlines are constructed using the procedure outlined in Bisset et al. 
1990). To avoid detecting such spurious vorticity peaks, another condition was added; 
a maximum of one detection is made within half an average vortex shedding period for 
vortices of the same sign. 

Detection locations seemed quite reasonable when viewed on plots of vorticity 
contours and sectional streamlines, e.g. figures 2(a) and 2(b). In figure 2(a) some 
vorticity concentrations (e.g. 7 < tUJd c 9) of either sign are not detected. This is 
either because (5) and (9) are not satisfied or because their peaks lie within half an 
average shedding period of a detection with a higher value of up (and are therefore 
ignored). 

5. Results 
5.1. Conditional averages 

A few results in this section are presented in the form of conditional averages. (Unless 
otherwise stated, these are based on negative-vorticity detections.) The conditional 
average of a quantity F is defined by 

where the origin of the coordinate system (x’,y’) is at the detected vortex centre, and 
Nis the total number of detections. (F) allows the focus to be on the coherent motion 
of the vortex. When cylindrical coordinates are used, with the vortex centre at r = 0, 
( F )  may be written 

the dependence on 0 having been eliminated, as discussed in 54. 

5.2. Detection frequency 
The dependence on x / d  of the average non-dimensional detection frequency 
(NIT) d/Uo is shown in figure 3, where T is the overall duration. This figure provides 
some information on the rate at which vortices decay, with the caveat that for 
x / d  2 30 some vortices may be outside the range of the rake and therefore escape 
detection. At x/d= 10, (N/T)d/Uo is about 0.2. This value is within the expected 
shedding frequency range off, d/Uo = 0.20 .21  (Roshko 1954), indicating that nearly 
all vortices are detected. 

5.3. Vorticity 
The probability density function of wp, denoted by pop(-  P/Awp, where P is the 
probability that wp is in the range wp. to wp+Awp), is shown in figure 4 for x / d  = 10. 
(Similar distributions have been obtamed at other values of x/d.)  The distributions of 
p,,, indicate that there is a considerable spread in wp, ranging from about 5Sm to about 
19“s,, the mode occurring at about 9.5Sm. As vortices travel downstream, their 
vorticity level declines gradually (figure 5). 
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FIGURE 3. Streamwise variation of vortex detection frequency. 
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-lqsrn 
FIGURE 4. Probability density function of peak vorticity at x/d = 10. (k,,, = 4.0). 

The vorticity distribution within an individual vortex is investigated using (a )  (r) ,  
the conditional mean vorticity at a radius r from the vortex centre, and ( w )  (x’, 0), the 
conditional vorticity in a longitudinal direction through the vortex centre. Figure 6 
shows that (8) (r)/Q,,, where 8, = (8) (0), is almost universal for 10 < x / d  < 60 and 
reasonably well fitted by an exponential curve 

This is closely similar to (3), with rl = 0.52d. A similar behaviour is observed for 
(w)(x’,O)/wo (figure 6), where wo = (w) (O ,O) ,  which partly justifies the use of Q(r) 
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FIGURE 5. Streamwise variation of peak vorticity. The error bar denotes If: standard deviation. 
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FIGURE 6. Conditional vorticity distributions of {o) (x’, 0) in the x-direction through the vortex 
centre and ( D ) ( r )  in the radial direction: 0, x / d =  10; 0,20;  A, 30; +, 40; X, 50; 0,60; -, 
exp [ - 1.26(r/0.52d)2]. 

for representing the radial distribution of vorticity. However, the magnitude of 
( w )  (x’,  O)/w, decreases slightly more rapidly near the centre than (Q) (r)/Q,,. This is 
probably attributable to the relatively large uncertainty (k 2.5 mm) in the lateral 
location of vortices (the uncertainty in the streamwise location is only about f 1 mm, 
i.e. +;U,/sampling frequency) which may result in the detected vortex centre 
(x’ =y’ = 0) being slightly displaced from the actual centre. If an ideal two- 
dimensional vortex has an axisymmetric vorticity which decreases monotonically in a 
radial direction away from a central extremum (e.g. McWilliams 1990), any vorticity 
distribution (normalized by its maximum) along a line which does not pass through the 
vortex centre will indicate a reduced spread or a more rapid decrease as the distance 
from the centre increases. It is possible that the spread of ( w )  (x’, O) /w,  may have been 
more affected by the uncertainty in the lateral location of vortex centres than that of 
<Q) (r)/Q,,. The relatively large uncertainty in the lateral location of the vortices can 
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FIGURE 7. Contours of conditional vorticity < o ) d / U ,  at x l d  = 10 based on detections between 
probes 4 and 5:  - 1.7 to +0.7 (step = 0.2). Solid and dashed lines represent positive and negative 
contours respectively. 

also lead to a lateral elongation of the conditional vorticity contours. This is verified 
in figure 7 where ( w )  is based on the detections between probes 4 and 5. (The same 
scale has been used for both x- and y-directions.) The contours (not shown here) of 
( w ) ,  which are based on overall detections, are considerably more stretched than those 
in figure 7 because of the larger uncertainty in the lateral locations. 

The present vorticity distribution is consistent with that observed in McWilliams’ 
(1990) numerical simulations. For individual vortices, McWilliams found that vorticity 
had an approximately Gaussian distribution, independent of time (after an initial short 
period) if normalized by its extremum, and attributed this behaviour to viscous 
diffusion. 

5.4. Velocity distribution 
The departure of the instantaneous velocity (U,  V )  from its value (U,, V,)  at a vortex 
centre (x,, y,) is given by 

(13) 
(14) 

The conditional lateral and longitudinal velocities at y’ = 0, i.e. (u ’ )  (x’, 0) and 
(u’)  (x’, 0) (for simplicity written as { v ’ )  and (u’ )  hereafter), are shown in figure 8. In 
the context of comparing velocity distributions between the turbulent vortex and the 
Oseen vortex (u’)  may be identified with the circumferential velocity. The variation of 
( v ’ ) /U ,  (figure 8b) is similar to that of an Oseen vortex: it increases almost linearly 
near the centre and reaches a maximum before decreasing slowly. As xldincreases, the 
magnitude of (d)/ U, decreases. 

In contrast to (v’)/U,,, the magnitude of (u ‘ ) /U ,  (figure 8a)  is small. One feature 
of (u’ ) /  U,, is that the maximum occurs at the vortex centre. (This has also been verified 
for positive vortices.) It may also be seen on conditional velocity vectors. As shown in 
figure 9, the direction of the streamwise velocity component between consecutive 
vortices tends to be opposite to the flow, as a result of interactions between opposite- 
signed vortices. This suggests that the convection velocity, or velocity at the vortex 
centre, must be greater than the local mean velocity, consistent with earlier 
observations, e.g. Davies (1976) and Zhou & Antonia (1992a). 

u’(x’, y‘) = U(X‘, y’) - u,, 
21’(x’, y’) = V(Y,  y’) - v,. 

5.5 .  Vortex growth 
The change of size of the vortex is investigated by examining both the conditional 
average ( r , )  corresponding to 9, = 1.5Sm and the vortex core radius (I;) 
corresponding to the measured maximum velocity (0;). Figure 10 shows that (ru) and 
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FIGURE 8. Conditional velocity distributions in the x-direction through the vortex centre. (a) 
Longitudinal velocity; (b) lateral velocity and calculated circumferential velocity: 0,  x/d = 10; 0, 
20; A, 30; +, 40; X, 50; 0, 60; -, calculation. 

( r i )  are in reasonable agreement with each other, which corroborates the choice of 
SZ, (= 1.5Sm) in 54. Both decrease slowly as x/d increases, suggesting no increase in 
cross-sectional area of the vortex in the region 10 < x / d  < 60. The contour plots of 
(o) /S ,  at different xldvalues (not shown here) exhibit the same trend as (Y,) or ( r i ) .  
A similar observation was also reported by Hussain & Hayakawa (1987). McWilliams 
(1990) found little variation in size when studying the history of a single vortex but 
noticed a steady increase of the average size, which was attributed mainly to vortex 
pairing. 

Vortex growth can be caused by vorticity diffusion and vortex pairing. The latter is 
unlikely to be important in a wake (e.g. Cimbala, Nagib & Roshko 1988; Zhou & 
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Antonia 1992~).  The former seems plausible but may be counteracted by the effects of 
vorticity decay, cancellation (see $5.6 for details) and the tearing of weak vorticity 
patches from the periphery of a vortex due to strong strain (e.g. Dritschel 1988). It 
would appear that vortices in a turbulent wake do not grow in the same manner as in 
a laminar wake (e.g. Okude & Matsui 1987; Green & Gerrard 1991). 

Since the contours of ( 0 )  (figure 7) are calculated using data obtained by (4), they 
are not affected by the interpolation and surface-fitting procedures that have been 
applied in calculating quantities such as r, and r ($4). A rough estimate of the 
uncertainty associated with these procedures may therefore be obtained by com- 
paring the value of ( r , )  (where SZ = 1.5Sm) with the contour size corresponding to 
( w )  = 1.5Sm. At x / d  = 10, ( r , )  = 0.55d, while the average longitudinal and lateral 
extents of the contour ( w )  = 1.5Sm is about 0.53d. This suggests that the uncertainty 
in r, may be around 4 YO. 

5 .€I. Circulation 
The circulation within the vortex core is estimated by (r). Provided the turbulent 
vortex may be modelled by the Oseen vortex (this is justified in §6), the total circulation 
or vortex strength ( r )  can be calculated from (2), namely 

1 (r> w -(r). (ro)=[l-exp(-1.26)] 0.72 
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This relation implies that the vortex core contains about 70 YO of the total circulation. 
Figure 11 shows that (ro), when extrapolated, is in good agreement with the 

turbulent wake results of Kiya & Matsumura (1985) and Cantwell & Coles (1983) and 
slightly larger than the results of Bloor & Gerrard (1966) (the largest estimate of r, in 
their table 1 is shown in figure 11) and Schmidt & Tilmann (1972) (Re = 5100). 
Relative to the laminar wake results of Okude & Matsui (1990) and Green & Gerrard 
(1991), (ro) is much smaller and decreases more rapidly as x/d increases. Green & 
Gerrard found that vortex cores of opposite-sign vorticity overlapped in a laminar 
wake. This resulted in a cancellation of vorticity and thus a decline in the vortex 
strength. For the turbulent wake, this overlap should be more pronounced due to the 
smaller timescales. This would explain why the vortex strength decays more rapidly in 
the turbulent wake and would partly account for the lack of growth in the size of the 
turbulent vortices. 

6. Relevance to modelling with an Oseen vortex 
In the preceding section, the measured vorticity and circumferential velocity were 

found to have similar distributions to those of an Oseen vortex. It is appropriate here 
to assess briefly the relevance of an Oseen vortex to modelling. 

The measured vorticity distribution, (12), can be written in similar form to (3), 
namely 

where r1 = 0.52d. If (15) applies to an Oseen vortex, the circumferential velocity v, can 
be calculated from (2) after replacing To by 0, mi/ 1.26. The calculation is generally in 
good agreement with the measured (0 ' )  distributions for Ix'/dl 5 0.6 (figure 8b). A 
relatively large departure occurs at x / d  = 10. This does not necessarily invalidate the 
use of the model since v8 is calculated from an isolated Oseen vortex, while (v') 
comprises the combined effect of a sequence of turbulent vortices. At x / d =  10, 
alternating vortices are dominant (Antonia 1991). The lateral motion should therefore 
be reinforced (Bisset et al. 1990), which may explain why (v') is significantly greater 

(Q) (r) = Q, exp [ - 1 .26(r/rJ2], (15) 
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than vo when x'/d > 0.5. When r1 is determined, with a value of 0.4d, from a curve of 
best fit to ( w )  (x', 0) (figure 6), v,  agrees less well with experiment than when using the 
value of 0.52d inferred from ( Q ) ( r ) ,  i.e. (12). A possible reason for this is that 
<Q) (r)  represents the characteristic distribution of vorticity better than <w)  (x', 0). The 
model circulation within the vortex core is given by T = 2nr, v,(r). Figure 11 shows that 
r coincides quite well with {n. The above observations suggest that in a modelling 
context, the Oseen vortex should be adequate for calculating the vorticity, circulation 
and circumferential velocity, provided that measured values of SZ, and r,  are used. 

7. An Oseen vortex model based on measurement 
Using the Oseen vortex as the basic building block, the present model includes as 

much experimental data as possible, such as the lateral and longitudinal separations, 
size and strength of the vortices. In contrast, previous models were generally based only 
partly on measurements, possibly because of a dearth of experimental data. For 
example, Davies (1976) arrived at the vortex strength To and core radius rl by matching 
them to the measured peak vorticity. Oler & Goldschmidt's (1982) model used 
measured values of the longitudinal spacing and convection velocity of vortices. The 
lateral spacing T,, and r1 were governed by similarity relationships and adjusted so that 
the calculated mean-velocity profiles at x / d  = 30 agreed with measurement. Bisset 
et al. (1990) used the experimental value for the longitudinal spacing, whilst I-', was 
arbitrary (all results were normalized) and rl was adjusted for best agreement between 
calculated and measured profiles. 

The precise number of vortices in the computational domain is unlikely to be critical, 
although too small a number would not allow the calculated flow to provide a 
continuous approximation to the real flow while too large a number would obviously 
detract from the simplicity of the model. Here, 31 vortices were used in the 
computational domain, with a further six vortices added beyond each extremity of this 
domain to avoid end effects. At x / d =  10, the relative probability of the duration 
7 between adjacent vortices of opposite sign (figure 12) exhibits two side lobes 
at 7UJd w 2.1 (half the average wavelength) and is nearly zero in the range 
-0.7 5 7UC/d  5 0.7, reflecting the importance of alternating vortices and suggesting 
the arrangement shown in figure 13. The measured average wavelength ( A  = 4.2d) and 
average lateral separation ( I  = 0.8d at x / d  = 10) of vortices have been used. 

Equation (2) and the experimental values of rl (= 0.52d) and To (= 1 .5U0 d )  are used 
to determine the circumferential velocity vo of each vortex. The longitudinal and lateral 
velocities induced by a vortex located at (xc, y,) are calculated using the relations 
u,sinO and v,cos8, where 8 = tan-' [O,-y , ) / (x-xc)] .  The velocity at any given point 
is determined by superposing the contributions from all vortices, namely 

v, cos 0 U =  U,,---Cv,sinB, n V = - x  n 
1 1 

_ - -  
where n (= 43) is the total number of vortices. The average values 8, V, u2, v2 and tIii 
are then determined, for example 

i M  

where M (= 400) is the total number of grid points in the longitudinal direction. P is 
ignored as it is always at least one order of magnitude smaller than 8. 
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FIGURE 12. Relative probability of duration between adjacent opposite-signed vortices. 
(T = 0 is the time at which a negative-signed vortex is detected). 
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FIGURE 13. Arrangement of vortices in the initial model. 

- -  
The calculated distributions of V ,  u2, v z  and im are compared in figure 14 with 

experimental data. These data were obtained in a separate experiment using a three- 
wire probe (X-wire in combination with a cold wire). While the calculation of 3 is in 
reasonable agreement with the measured distribution, the agreement for 0 and ;;" is not 
as good. The calculated values of m are negligible and hence seriously in error. 

Clearly some adjustment had to be made to the model to improve its performance. 
One possibility was to allow the spatial position of the vortices to vary, as observed 
experimentally, since the arrangement shown in figure 13 was probably too simplistic 
and did not reflect the possible effect of the variation in the location of vortices on the 
distributions of U and Reynolds stresses. A useful measure of this variation is given by 
the probability density function plf (figure 15) of the lateral separation 1 = y - -y+  
between opposite-signed vortices, y-  and y+ denoting the locations of adjacent negative 
and positive vortices respectively. The mode of p l  occurs at 1 = 0.8d. Note that the 
value of 1 can be negative, implying that some positive vortices (generally below the 
centreline) can sometimes be found above adjacent negative vortices (generally above 
the centreline) and vice versa. The lateral positions of the vortices in the model were 

f Some truncation of this distribution was caused by the array of X-probes not extending to 
sufficiently large ly(. The p 1  distribution in figure 15 has been corrected slightly after the lateral 
distributions of detections obtained from the present data were compared with those obtained in a 
separate experiment in which all the eight X-probes were on one side of the centreline. 
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FIG= 14. Comparison between measmmmt and calculation: (a) mean velocity; (b) longitudinal 
Reynolds normal stress; (c) lateral Reynolds normal stress; (4 Reynolds shear stress. 0, measured 
conventional average; --, initial model; -, modified model. 

adjusted such that y- was equal to y,, and the distribution of I was consistent with 
figure 15. This adjustment had little effect on the calculation of 3 and m, but improved 
the calculation of U and 2, to the extent where the double peak in the latter quantity 
is now reproduced qualitatively. 

A second adjustment involved the introduction of a phase Merence between u and 
v into the model. For an Oseen vortex, U and Yare 90” out of phase, see (M), resulting 
in a zero value for m. Using spectral analysis, the data collected with the three-wire 
probe indicate that, at x/d = 10, U lags behind V by 95°-1000 within the vortices for 
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lld 
FIGURE 15. Probability density function of lateral separation between vortices of opposite sign. 

y j d  > 0, whereas U leads V by 80"-8S0 for y / d  < 0. A phase shift $ was therefore 
introduced into the computation of U, i.e. U = U, - vg sin (0- +). The value of + was 
chosen to be 10" and its sign was the same as that of r,; as a result, U lagged V by 100" 
for r, < 0 and led V by 80" for r,, > 0, consistent with experimental observations. It 
was noted that the contribution of negative vortices to positive im (below the 
centreline) is as large as 70-80 %, whereas the contribution to negative m (above the 
centreline) is of order 10-20 YO. This trend is reversed for positive vortices, suggesting 
that the concentration in the Reynolds shear stress resides mainly in the saddle region. 
Therefore, for r < rl the value of + is proportional to r/rl so that the phase shift mainly 
occurs f o r r >  r l .  Note that the introduction of $ only affects m (there is no effect on 
D, ;;" and v2). Results obtained with the modified model are in reasonable agreement 
with measurements (figure 14). 

The streamlines for part of the data corresponding to the modified model show good 
agreement with the conditional sectional streamlines (figure 16). Note that the 
streamlines do not spiral at the vortex centre because of the phase shift being 
introduced mainly for r > rl. In Bisset et aL's model, a phase shift was introduced 
mainly for r < r1 and resulted in the streamlines spiralling out of vortex centres (their 
figure 14). In the near wake, streamlines may spiral into or out of individual vortex 
centres (figure 2), and the rate of occurrence for these two cases is nearly the same 
(Zhou & Antonia 1992b). Consequently, conditional streamlines are in general closed 
near the centre. 

It should be noted that viscosity seems absent in the model since time is frozen and 
rl is constant, as in (2). This is different from some previous models, particularly for 
laminar wakes (e.g. Schaefer & Eskinazi 1959; Green & Gerrard 1991), which 
incorporate the effect of viscosity through the viscous diffusion term in (1). The viscous 
Oseen vortex, as described by (l), has a constant circulation but redistributes the 
vorticity as time varies. I t  is not apparent that this would be a good route to follow in 
our case, especially since our measurements indicate that the vortices maintain the 
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FIGURE 16. Comparison between sectional streamlines obtained from the modified model data (a) 
and from measurement (b) (U, /U,  = 0.87). 

same relative distribution of vorticity (figure 6) as they travel downstream. Also note 
that the constancy of r I ,  used in (2), is supported by the data in figure 10. In summary, 
the present model is more consistent with the measurements than the viscous Oseen 
vortex model. 

Since the model is largely based on measurement and its basic building block is 
kinematically consistent with turbulent vortices, it provides a reasonable framework 
for interpreting experimental observations and perhaps gaining insight into mechanisms 
responsible for the production of Reynolds stresses. It seems clear that vortices are 
mainly responsible for 0 and the Reynolds normal stresses. The variation in the lateral 
location of the vortices reduces the mean velocity defect and increases substantially the 
magnitude of 2 near the centreline. 

The present model is formed in the near wake ( x / d =  10). At larger x/d, some 
modifications may be needed to account for flow development. For example, the 
opposing mode of vortices may become important as x / d  increases (figure 12 indicates 
that the relative probability of duration between adjacent vortices of opposite sign has 
a larger spread at x / d  = 20 than x / d  = 10). 

8. Conclusions 
Turbulent vortices in the wake of a circular cylinder are detected by a method which 

includes vorticity and circulation criteria. The vorticity and circumferential velocity 
distributions which correspond to these detections are exponential in shape, similar to 
those for an Oseen vortex. Vorticity profiles normalized by the local peak vorticity are 
essentially unchanged in the range x / d  = 10 to 60. Owing to the interaction between 
vortices of opposite sign, the longitudinal velocity distribution in the streamwise 
direction has its maximum at the centre of the vortex. This is consistent with earlier 
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measurements (Davies 1976; Zhou & Antonia 1992a) which indicated that the 
convection velocity of the vortex is greater than the local mean velocity, especially at 
small x/d. 

An Oseen vortex model, which draws significantly from measurement, for example 
with respect to the strength, size and separations between vortices, reproduces the 
measured mean velocity and normal Reynolds stresses reasonably well. Reasonable 
agreement is also achieved for the Reynolds shear stress when a phase shift between u 
and v, similar to that observed in experiments, is included in the model. 

The authors are grateful to Mr D. K. Bisset for his assistance with the programming, 
his suggestions and comments on this manuscript. The support of the Australian 
Research Council is gratefully acknowledged. 
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